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Abstract

With the increase in car ownership, traffic noise pollution has increased considerably

and is one of the most severe types of noise pollution that affects living standards.

Noise reduction by sound barriers is a common protective measure used in this country

and abroad. The acoustic performance of a sound barrier is highly dependent on its

shape and material. In this paper, a semianalytical meshless Burton–Miller‐type singular

boundary method is proposed to analyze the acoustic performance of various shapes of

sound barriers, and the distribution of sound‐absorbing materials on the surface of

sound barriers is optimized by combining a solid isotropic material with a penalization

method. The acoustic effect of the sound‐absorbing material is simplified as the

acoustical impedance boundary condition. The objective of optimization is to minimize

the sound pressure in a given reference plane. The volume of the sound‐absorbing

material is used as a constraint. The density of the nodes covered with the sound‐

absorbing material is used as the design variable. The method of moving asymptotes

was used to update the design variables. This model completely avoids the mesh

discretization process in the finite element method and requires only boundary nodes.

In addition, the approach also does not require the singular integral calculation in the

boundary element method. The method is illustrated and validated using numerical

examples to demonstrate its accuracy and efficiency.

K E YWORD S

sound barrier, acoustic analysis, material distribution optimization, semianalytical meshless
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1 | INTRODUCTION

While the rapid development of transportation has provided

convenience and comfort in terms of travel, noise pollution has

also accordingly increased considerably. Long‐term exposure to

traffic noise can lead to adverse health effects, including insomnia,

hypertension, and cardiovascular disease. Consequently, the imple-

mentation of sound barriers has become a common practice in

mitigating the noise impact caused by traffic. Over the past few

decades, both domestically and internationally, researchers have

shown sustained interest in enhancing the acoustic performance of

sound barriers. The geometry and material composition are the

primary factors influencing the acoustic performance of sound

barriers. Traditionally, sound barriers are designed based on

experimental testing. May and Osman1 investigated the acoustic

performance of different shapes of sound barriers. Joynt and Kang2
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and Hong and Jeon3 evaluated the effect of various materials on the

sound barrier.

The direct experimental evaluation of sound barriers is costly, time‐

consuming, inflexible, and limited in terms of variable control. With

advancements in computational techniques and numerical methods,

simulation‐based approaches have gained prominence in designing and

optimizing sound barriers. Various numerical methods have been

developed, including the finite element method (FEM)4,5 and the

boundary element method (BEM).6,7 Reiter et al.4 developed a periodic

FEM model to calculate the sound reflection properties of any layered

acoustic system. Papadakis and Stavroulakis5 accurately estimated the

insertion loss of sound barriers by utilizing FEM. Monazzam et al.6

investigated the performance of T‐shaped sound barriers covered with

oblique diffusers using the BEM. Additionally, Lam7 predicted the

insertion loss of sound barriers in the presence of atmospheric

turbulence using BEM.

Previous studies have predominantly focused on the shape

optimization of sound barriers. Grubeša et al.8 utilized BEM and genetic

algorithms to optimize the structure of the sound barrier. Liu et al.9 and

Chen et al.10 optimized the shape of the sound barrier by using

isogeometric BEM. Desai et al.11 introduced the level‐set method to

optimize sound barriers topologically. Recently, increased attention has

been focused in research on optimizing the distribution of sound‐

absorbing materials. Kim and Yoon12 combined FEM and a gradient‐

based optimizer to optimize the distribution of rigid and sound‐absorbing

materials. Zhao et al.13 and Chen et al.14 optimized the distribution of

sound‐absorbing materials at the edge of the sound barrier by integrating

BEMwith an optimality criteria (OC) solver. It is undeniable that FEM and

BEM have achieved great success. However, they involve cumbersome

mesh generation and singular integral calculation.

In recent years, many efforts have been devoted to the development

of various meshless methods15–24 to avoid mesh generation in FEM and

singular integral calculation in BEM. A more detailed background on

meshless methods can be found in Refs. 25–27. Among them, the

Burton–Miller‐type singular boundary method (BM‐SBM) proposed by

Fu et al.28 is a semianalytical and boundary‐type meshless scheme,

and has been successfully applied to high‐frequency acoustic radiation

and scattering,29 acoustic design sensitivity analysis,30,31 and spurious

eigensolutions in exterior acoustic problems.32

In this study, BM‐SBM is utilized to analyze the acoustic performance

of sound barriers with different shapes. The influence of the distribution

of sound‐absorbing materials on the acoustic performance of sound

barriers is discussed. Finally, the distribution of sound‐absorbing materials

on the surface of the sound barrier is optimized using the method of

moving asymptotes (MMA).33 The solid isotropic material with penaliza-

tion (SIMP)34 technique is used to force the solution rapidly to approach 0

or 1, where 0 and 1 denote the void and the material, respectively.

Although the SIMP method can eliminate intermediate densities, some

intermediate‐density elements still exist in actual optimization. Therefore,

the volume‐preserving nonlinear density filter35 based on the Heaviside

function is introduced to suppress the intermediate density.

The rest of the paper is structured as follows: The governing

equations and the fundamental solutions are presented in Section 2.

Section 3 describes BM‐SBM for acoustic radiation and scattering

problems. Section 4 presents a topological optimization model for the

distribution of sound‐absorbing material on the sound barrier.

Section 5 presents several numerical tests to establish the validity

and accuracy of the proposed optimization method. Finally, the paper

is summarized with some concluding remarks in Section 6.

2 | PROBLEM STATEMENT

2.1 | Governing equation and boundary conditions

Consider the sound propagation in a homogeneous isotropic medium; the

governing equation for an exterior acoustic problem can be written as

∈ x xk p( + ) ( ) = 0 Ω,2 2 (1)

where 2 represents the Laplacian operator, k ω c= / is the acoustic

wavenumber, with ω being the angular frequency and c being the

sound wave speed in the medium, and xp ( ) denotes the sound

pressure at the point x inside the acoustic domain Ω.

The boundary conditions of acoustic problems can be catego-

rized into three types as follows:

The Dirichlet boundary condition

∈x x xp p( ) = ¯ ( ), Γ ,D (2)

the Neumann boundary condition

∈
x

x x
p

n
ρωv

∂ ( )

∂
= i ¯ ( ), Γ ,

x
N (3)

and the impedance boundary condition

∈
x

x x x
p

n
kβ p

∂ ( )

∂
= i ( ) ( ), Γ ,

x
I (4)

where xp̄ ( ) is the known sound pressure, xv̄ ( ) is the known normal

velocity, i is the imaginary unit, ρ is the density of the medium, and

xβ ( ) represents the surface admittance at position x .

For the exterior acoustic problem, the sound pressure xp ( ) at the

infinite field should satisfy the Sommerfeld radiation condition:
















x
xr

p

r
kplim

∂ ( )

∂
− i ( ) = 0,

r→∞
(5)

where r is the distance from the point x to the center of the sound

field.

2.2 | Fundamental solutions

The fundamental solutions of the two‐dimensional (2D) Helmholtz

equation are expressed as

x sG H kr( , ) = ( ),
i

4 0
(1) (6)
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x sG

n

k

r
H kr x s n x s n

∂ ( , )

∂
= −

i

4
( )(( − ) + ( − ) ),

x
x x1

(1)
1 1 1 2 2 2 (7)

where x and s are the field and source points, respectively.

x sr = ‖ − ‖2 is the Euclidean distance between points x and s. xi, si,

and nxi are Cartesian components of point x , point s, and normal

vector nx , respectively. H0
(1) is the zero‐order Hankel function of the

first kind. The derivative of the m‐order Hankel function of the first

kind satisfies the following rule:























H t H t H t( )

′
= ( ) − ( ) .m

m

t m m
(1) (1)

+1
(1) (8)

In a 2D problem with a half‐space, the fundamental solutions can

be written as

x sG H kr H kr( , ) =
i

4
( ) +

i

4
( ′),0

(1)
0
(1) (9)




{
}

x sG

n

k

r
H kr x s n x s n

r
H kr x s n x s n

∂ ( , )

∂
= −

i

4

1
( )[( − ) + ( − ) ]

+
1

( )[( − ′ ) + ( − ′ ) ] ,

x
x x

x x

1
(1)

1 1 1 2 2 2

1
(1)

1 1 1 2 2 2

(10)

where s′ is the image point of source point s with respect to the

ground, x sr′ = ‖ − ‖2.

3 | NUMERICAL METHODOLOGY

3.1 | BM‐SBM formulation for 2D acoustic
problems

BM‐SBM is a boundary‐type meshless method. In BM‐SBM, N

collocation points are placed on the physical boundary to coincide

with the source points (Figure 1), and the solution of the Helmholtz

equation can be approximated by a linear combination of the

fundamental solutions:

F IGURE 1 Schematic diagram of the distributions of sources and
collocation points in BM‐SBM for exterior problems.

∈ ∈∑x x s x s x sp α G λE α h( ) = ( ( , ) + ( , )) + , Γ , Γ,i
j

i j

N

j i j i j i ii
BM

i D j
=1

≠

(11)

∈ ∈∑
x

x s x s x s
p

n
α M λH α q

∂ ( )

∂
= ( ( , ) + ( , )) + , Γ , Γ,

x

i

j

i j

N

j i j i j i ii
BM

i N j
=1

≠

(12)

∈ ∈
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∑
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n
kβ p α M λH α q

k β α G λE β α h

∂ ( )

∂
−i ( ) ( ) = ( ( , ) + ( , )) +

−i ( ) ( ( , ) + ( , )) + ( ) ,
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i
i i

j

i j
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j i j i j i ii
BM

j

i j

N

i j i j i j i i ii
BM

i I j

=1

≠

=1

≠

(13)

where x sM ( , ) = ,
x s

i j

G

n

∂ ( , )

∂ x

i j

i
x sE ( , ) = ,

x s

i j

G

n

∂ ( , )

∂ s

i j

i
x sH ( , ) = ,

x s

i j

G

n n

∂ ( , )

∂ ∂x x

i j

j i

2

λ =
k

i

+ 1
,

N represents the number of the nodes and hii
BM and qii

BM are the origin

intensity factors (OIFs) corresponding to the Burton–Miller‐type

formulations. α{ }j j N=1, …, are the unknown coefficients. Equation (13)

can be considered as a linear combination of Equations (11) and (12).

Using Equations (11)–(13) and matching with the boundary

conditions in Equations (2)–(4), a linear system can be obtained:

Aα b= , (14)

where A denotes the coefficient matrix, b represents the boundary

conditions, and α is the unknown coefficient. It can be found that

the matrix A and the vector b are available. Once the unknown

coefficient α is computed, the sound pressure xp ( ) at any point inside

the domain can be calculated by

∈ ∈∑x x s x s x sp α G λE( ) = ( ( , ) + ( , )), Ω, Γ.
j

N

j j j j
=1

(15)

3.2 | OIFs

OIFs are a key problem for BM‐SBM. There are several methods

to calculate the OIFs, such as the subtraction and adding‐back

technique (SAB), the inverse interpolation technique, and empirical

formulas. In this work, SAB and empirical formulas are used to

calculate hii
BM and qii

BM:

∑
x s

h h λ
L

L

G

n
= −

∂ ( , )

∂
,

s
ii
BM

ii
j

i j

N
j

i

i j

=1

≠

0

j
(16)












∑

x s
q q λ

k
h

L

L

G

n n
= +

2
−

∂ ( , )

∂ ∂
,

s
ii
BM

ii ii
j

i j

N
j

i

i j

x

2

=1

≠

2
0

j i

(17)

where Lj is the half‐length of the curve between the source points

sj−1 and sj+1 on the physical boundary as shown in Figure 2,

x s x sG ( , ) = −ln ‖ − ‖ /2π,i j i j0 2 hii and qii can be calculated as follows:

LIU ET AL. | 333

 27671402, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

sd2.12087, W
iley O

nline L
ibrary on [08/07/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



F IGURE 2 Schematic configuration of the source points sj and
the curve Lj.

F IGURE 3 Sound absorption diagram of porous materials.



 


 


 










h

L k
γ=

i

4
−

1

2π
ln

2π
+ ln

2
+ ,ii

i (18)

∑
x s

q
L

L

L

G

n
=

1
−

∂ ( , )

∂
,

s
ii

i j

i j

N
j

i

i j

=1

≠

0

j
(19)

where γ is the Euler–Mascheroni constant.

4 | TOPOLOGY OPTIMIZATION MODEL
WITH BM‐SBM

4.1 | Optimization model

A sound‐absorbing material is designed to absorb sound energy and

reduce sound reflection. Its working principle is shown in Figure 3. This

paper aims to improve the sound insulation properties of the sound

barrier by optimizing the distribution of the sound‐absorbing material.

In this study, the optimization problem can be formulated as follows:










∑ ∑

p p

ρ v ξ v

ρ ρ i N

Minimize: Π = ,

Subject to : − ≤ 0

0 ≤ ≤ ≤ 1, = 1, 2, …, ,

ρ
f
H

f

i

N

i i
i

N

i

i

=1 =1

min e

e e
(20)

where the objective function is the minimization of sound pressure,

pf denotes the sound pressure vector in the field points located on a

prescribed reference plane, pf
H denotes the conjugate transpose of pf ,

ρ i N( = 1, 2, …, )i e denotes the ith design variable of the relative

material density, withNe being the total number of design variables, vi

is the volume corresponding to nodes, ξ is the volume fraction ratio

constraint, and ρmin is a small positive value to avoid the singularity of

the matrix, for example, ρ = 0.000 1min .

The SIMP method is introduced into the material distribution

optimization problem. The relationship between βi and ρi is expressed as

β β f ρ= ( ),i i0 (21)

where β0 is the normalized surface admittance value. The SIMP

interpolation function is introduced as

f ρ ρ( ) = ,i i
η (22)

where the penalization parameter η = 3 is recommended in this work.

The η can eliminate intermediate densities, causing them to rapidly

approach 0 or 1, where 0 and 1 denote the void and the material,

respectively. Although the SIMP method can eliminate intermediate

densities, some intermediate‐density elements still exist in actual

optimization. Therefore, we introduced a volume‐preserving non-

linear density filter to suppress the intermediate density.

4.2 | Acoustic sensitivity with respect to the design
variable

The optimization problem is solved by a gradient‐based mathematical

programming algorithm, which requires a sensitivity analysis of the

objective function with respect to the design variables. The

sensitivity of the objective function with respect to the design

variable ρ i N( = 1, 2, …, )i e is

R






ρ

p
p

ρ

∂Π

∂
= 2

∂

∂
.

i
f
H f

i

(23)

By differentiating Equation (15) with respect to the design

variable ρ, the design sensitivity can be derived as follows:









∑

x
x s x s

x s x sp

ρ

α

ρ
G λE α

G λE

ρ

∂ ( )

∂
=

∂

∂
( ( , ) + ( , )) +

∂ ( ( , ) + ( , ))

∂
,

i j

N
j

i
j j j

j j

i=1

(24)

in which fundamental solutions are designed to be variable‐independent,

so they are zero relative to the derivative of ρi;
α

ρ

∂

∂

j

i
can be calculated

using the adjoint variable method.36

4.3 | Design variable update criteria

In this work, MMA is used to solve optimization problems. The

convergence rule is given as follows:
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F IGURE 4 Flowchart of topology optimization.

TABLE 1 Main frequencies of different roads.

Type of roads
Flat and
straight roads

Elevated
roads Tunnel

Main frequency 150–250Hz 250–350Hz 350–450 Hz

τ
Π − Π

Π
≤ ,

ψ ψ

ψ

+1
(25)

where τ is the convergence parameter. The flowchart of topology

optimization is shown in Figure 4.

5 | NUMERICAL RESULTS AND
DISCUSSION

Three numerical examples are used to study the acoustic perform-

ance analysis of sound barrier and topology optimization of sound‐

absorbing material distribution. The first example discusses the

acoustic performance of three sound barriers. In Example 2, the

insertion loss of the sound barrier in five cases is considered. Finally,

in Example 3, the topology optimization of sound‐absorbing material

distribution is studied.

According to research, urban traffic noise is mainly composed

of low‐frequency and mid‐frequency noise. Table 1 shows the main

frequencies of the different roads.37 In the simulation, the center

frequencies of the main frequencies of the three roads are used as

the test frequencies. The medium of the acoustic field is assumed to

be air with the following parameters: the density is ρ = 1.2 kg/m ,3

and the sound velocity is c = 340m/s. The reference sound pressure

is p = 2.0 × 10 Pa.ref
−5 The sound pressure level (SPL) is calcu-

lated from

 
SPL = 20 log .

p

p10
ref

(26)

The noise reduction effect of the sound barrier can be measured

by the insertion loss as follows:

IL = 20 log ,
p

p10
0 (27)

where p0 is the sound pressure at the sound point when the sound

barrier is not placed.

5.1 | Example 1

In the first example, the acoustic performance of three different rigid

sound barriers is analyzed. The sound barrier is placed on a rigid

ground with the cross‐section shown in Figure 5. The specific size

parameters of the sound barrier are shown in Figure 6. The boundary

of the vertical sound barrier, the Half‐Y‐shaped sound barrier, and

the T‐shaped sound barrier are discretized into 2496, 2586, and

2892 boundary points, respectively.

The accuracy and validity of BM‐SBM are established by

introducing FEM. In FEM, the domain is enclosed by a rectangle

[−1, 9] × [0, 5] with a perfectly matched layer (PML) of thickness

1 m. Figure 7 shows the SPLs at the point (5, 1.5) under different

frequencies obtained using BM‐SBM and FEM. It is noteworthy

that BM‐SBM converges by requiring fewer nodes, while FEM

requires more elements. As an infinite‐field problem, FEM needs

to discretize the whole domain including PML, while BM‐SBM

only needs to discretize the boundary and ensures high

computational accuracy due to the use of fundamental solutions.

Subsequently, the computational domain of interest is discretized

into 30 356 elements, including 898 boundary elements and

26 994 domain elements. The distribution of SPL around the

vertical sound barrier predicted by BM‐SBM and FEM at different
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frequencies and their relative errors are shown in Figure 8. The

numerical results obtained using BM‐SBM demonstrate excellent

agreement with those obtained using FEM. Subsequently, we

use BM‐SBM to predict the distribution of SPL around the

Half‐Y‐shaped and T‐shaped sound barriers at different frequen-

cies (Figures 9 and 10). It can be seen that the SPL behind the

T‐shaped sound barrier is smaller than that behind the other two

sound barriers.

Afterward, the rigid sound barrier is covered with sound‐

absorbing material. The 110 uniformly distributed points on the

reference plane are selected as observation points (Figure 5). The

average values of SPL at 110 observation points corresponding to

different admittance values at 200, 300, and 400 Hz frequencies are

calculated. The influence curves of the admittance value of the

sound‐absorbing material on the noise reduction effect of the sound

barrier are shown in Figure 11. A higher admittance value can

improve the noise reduction effect of the sound barrier. The

T‐shaped sound barrier with sound‐absorbing materials has better

efficiency. To sum up, the T‐shaped sound barrier performs best

whether it is covered with sound‐absorbing materials or not.

5.2 | Example 2

In the second example, the impact of sound‐absorbing material

distribution on the acoustic performance of the sound barrier is

studied. For testing purposes, sound‐absorbing materials with an

admittance value of 1 are selected. Five different cases are considered

based on various combinations of covered and uncovered sound‐

absorbing materials on the left boundary of the vertical sound barrier,

as illustrated in Figure 12. Two reference lines are chosen to calculate

the insertion loss. The first reference line is a horizontal line positioned

at a height of 1.5m above the ground. It extends from the sound barrier

to a location 40m behind the sound barrier. The second reference line

is a vertical straight line positioned 15m behind the sound barrier. It

spans from the ground to a height of 10m above the ground.

Figures 13–15 show the insertion loss curves for different cases

at different frequencies. It can be seen that the trends of insertion

loss in the five cases are basically the same. The negative values of

insertion loss result from the interference phenomenon with other

sound waves after the reflection of diffracted sound waves in contact

with the ground. Case 2 only needs half of the volume of Case 5 to

achieve the same effect as Case 5, and the insertion loss even

surpasses that of Case 5 at some frequencies and locations, which

means that complete sound‐absorbing material coverage is not

optimal. It is worth noting that the insertion loss of Case 1 is not the

lowest. The above findings demonstrate the need for optimal design

of the sound‐absorbing material distribution on the sound barrier.

This conclusion was previously reached also in Ref. 13.

5.3 | Example 3

In the last example, the distribution of sound‐absorbing materials on the

surface of the sound barrier is optimized to verify the effectiveness and

F IGURE 6 Size parameters of sound barriers with different
shapes.

F IGURE 5 Cross‐section of the sound barrier.
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F IGURE 7 Sound pressure level at (5, 1.5) for different numbers of elements and nodes: (A) f = 200 Hz, (B) f = 300Hz, and (C)
f = 400Hz. BM‐SBM, Burton–Miller‐type singular boundary method; FEM, finite element method.

F IGURE 8 Distributions of SPL around the vertical sound barrier at different frequencies: (A) Results obtained by FEM (f = 200 Hz),
(B) results obtained by FEM (f = 300Hz), (C) results obtained by FEM (f = 400Hz), (D) results obtained by BM‐SBM (f = 200 Hz), (E) results
obtained by BM‐SBM (f = 300Hz), (F) results obtained by BM‐SBM (f = 400Hz), (G) relative error of the two methods (f = 200Hz), (H) relative
error of the two methods (f = 300Hz), (I) relative error of the two methods (f = 400 Hz). BM‐SBM, Burton–Miller‐type singular boundary method;
FEM, finite element method; SPL, sound pressure level.

F IGURE 9 Distributions of SPL around the Half‐Y‐shaped sound barrier at different frequencies: (A) f = 200 Hz, (B) f = 300Hz, and
(C) f = 400Hz. SPL, sound pressure level.
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applicability of the proposed method. The sound barrier is placed on a

rigid ground with the cross‐section shown in Figure 5. The specific size

parameters of the sound barrier are shown in Figure 6. Sound‐absorbing

material with an admittance value of 1 is selected for the test. The 110

observation points uniformly distributed on the observation plane are

selected and the sound pressure values at these points are used as the

objective function for optimization. The convergence parameters τ and

the initial value of the design variable ρ i N( = 1, 2, …, )i e are set to 10−5

and 1, respectively.

First, the distribution of sound‐absorbing materials on the

surface is optimized for three shapes at a frequency of 200 Hz.

The volume ratio constraint ξ is set to 1. Figure 16 shows the

F IGURE 10 Distributions of SPL around the T‐shaped sound barrier at different frequencies: (A) f = 200 Hz, (B) f = 300 Hz, and (C) f = 400Hz.
SPL, sound pressure level.

F IGURE 11 Average SPLs at observation points in the reference plane for different values of admittance: (A) f = 200Hz, (B) f = 300 Hz, and
(C) f = 400Hz.

F IGURE 12 Distribution of sound‐absorbing materials for sound barriers: (A) Case 1, (B) Case 2, (C) Case 3, (D) Case 4, (E) Case 5.
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F IGURE 13 Insertion loss curves of the sound barrier under different locations (f = 200Hz): (A) Insertion loss curve at the height of 1.5 m
above the ground in the horizontal direction. (B) Insertion loss curve in the vertical direction at a distance of 15m from the sound barrier.

F IGURE 14 Insertion loss curves of the sound barrier under different locations (f = 300Hz): (A) Insertion loss curve at the height of 1.5 m
above the ground in the horizontal direction. (B) Insertion loss curve in the vertical direction at a distance of 15m from the sound barrier.

F IGURE 15 Insertion loss curves of the sound barrier under different locations (f = 400Hz): (A) Insertion loss curve at the height of 1.5 m
above the ground in the horizontal direction. (B) Insertion loss curve in the vertical direction at a distance of 15m from the sound barrier.
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optimal distribution of sound‐absorbing materials for the three

sound barrier surfaces. Figure 17 shows the iterative history of

the objective function and the volume ratio. It can be seen that

the optimized volume ratio of all three sound barriers is less than

1. This also confirms our previous conclusion that the noise

reduction effect of full‐coverage sound‐absorbing materials is not

necessarily optimal.

The engineering application is more concerned with optimal

design under the premise that the design material is restricted.

Therefore, the volume constraint ratio is set to 0.5 for optimization.

Figures 18–20 show the optimal distribution of sound‐absorbing

materials on the surface of the vertical sound barrier, the half‐Y

sound barrier, and the T‐shaped sound barrier at different frequen-

cies, respectively. Figure 21 shows the iterative history of the

corresponding objective function. Table 2 shows the average SPLs of

the rigid, full sound‐absorbing material and the optimized sound

barrier at the observation points within the reference plane. The

above results confirm the feasibility and effectiveness of the

optimization method proposed in this paper.

There exists a dependence on both frequency and shape for the

optimization problem. In real life, sound barriers are not exposed to a

specific sound frequency only. Therefore, we define a new objective

function to study the optimization of the frequency range. The new

objective function can be expressed as

∫
ω ω

ωΠ =
1

−
Πd ,

ω

ω

new
2 1 1

2

(28)

where ω1 and ω2 denote the lower and upper limits of the frequency

range, respectively. In this example, we consider a frequency range of

200–500Hz. The volume constraint ratio is set to 0.5. Figure 22

shows the corresponding optimization results for different sound

barriers in this frequency range.

F IGURE 16 Optimal distribution of sound‐absorbing materials on the surface of different sound barriers at a frequency of 200 Hz:
(A) vertical sound barrier, (B) half‐Y‐shaped sound barrier, and (C) T‐shaped sound barrier.

F IGURE 17 Iterative history of the objective function and volume ratio at a frequency of 200Hz: (A) Iterative history of the objective
function. (B) Iterative history of the volume ratio.
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F IGURE 18 Optimal distribution of sound‐absorbing materials on the surface of vertical sound barriers at different frequencies: (A) 200Hz,
(B) 300Hz, and (C) 400 Hz.

F IGURE 19 Optimal distribution of sound‐absorbing materials on the surface of Half‐Y‐shaped sound barriers at different frequencies:
(A) 200Hz, (B) 300Hz, and (C) 400 Hz.

F IGURE 20 Optimal distribution of sound‐absorbing materials on the surface of T‐shaped sound barriers at different frequencies:
(A) 200Hz, (B) 300Hz, and (C) 400 Hz.
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TABLE 2 Average SPLs at observation points in the reference plane corresponding to sound barriers with different material distributions.

Frequency (Hz) Sound barrier

Material distribution

Full rigid (dB) Full sound‐absorbing material (dB) Optimal design (dB)

200 Vertical 55.14 50.75 49.60

Half‐Y‐shaped 55.45 51.29 49.65

T‐shaped 52.67 48.97 47.59

300 Vertical 55.59 49.80 47.99

Half‐Y‐shaped 53.76 48.04 46.04

T‐shaped 50.29 46.04 41.52

400 Vertical 40.64 37.81 30.35

Half‐Y‐shaped 43.11 37.55 29.99

T‐shaped 39.14 34.35 28.78

F IGURE 21 Iteration history of the objective function at different frequencies: (A) 200Hz, (B) 300 Hz, and (C) 400Hz.

F IGURE 22 Optimal distributions of sound‐absorbing materials on the surface of the sound barriers in a frequency range (200–500 Hz).
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6 | CONCLUSIONS

In this paper, the acoustic performance of sound barriers with

different shapes is analyzed by BM‐SBM, and the distribution of

sound‐absorbing materials on the sound barrier surface is optimized

by BM‐SBM and the SIMP method. The penalization parameter and

the smoothed Heaviside function are introduced to achieve a

continuous decrease in the proportion of structural intermediate‐

density units during the iterative optimization process. Numerical

results demonstrate the feasibility and effectiveness of the proposed

method. The simulation results reveal that the T‐shaped sound

barrier is found to be the most effective sound barrier and the noise

reduction effect is not necessarily the best if the entire surface of the

sound barrier is covered with sound‐absorbing materials. Although

this paper only analyzes and optimizes 2D sound barriers, the

framework can also be applied to 3D sound barriers.
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